217 research outputs found

    SocialCloudShare: a Facebook Application for a Relationship-based Information Sharing in the Cloud

    Get PDF
    In last few years, Online Social Networks (OSNs) have become one of the most used platforms for sharing data (e.g., pictures, short texts) on the Internet. Nowadays Facebook and Twitter are the most popular OSN providers, though they implement different social models. However, independently from the social model they implement, OSN platforms have become a widespread repository of personal information. All these data (e.g., profile information, shared elements, users' likes) are stored in a centralized repository that can be exploited for data mining and marketing analysis. With this data collection process, lots of sensitive information are gathered by OSN providers that, in time, have become more and more targeted by malicious attackers. To overcome this problem, in this paper we present an architectural framework that, by means of a Social Application registered in Facebook, allows users to move their data (e.g., relationships, resources) outside the OSN realm and to store them in the public Cloud. Given that the public Cloud is not a secure and private environment, our proposal provides users security and privacy guarantees over their data by encrypting the resources and by anonymizing their social graphs. The presented framework enforces Relationship-Based Access Control (ReBAC) rules over the anonymized social graph, providing OSN users the possibility to selectively share information and resources as they are used to do in Facebook

    Nonlinear UGV Identification Methods via the Gaussian Process Regression Model for Control System Design

    Get PDF
    In this paper, two identification methods are proposed for a ground robotic system. A Gaussian process regression (GPR) model is presented and adopted for a system identification framework. Its performance and features were compared with a wavelet-based nonlinear autoregressive exogenous (NARX) model. Both algorithms were compared and experimentally validated for a small ground robot. Moreover, data were collected throughout the onboard sensors. The results show better prediction performance in the case of the GPR method, as an estimation algorithm and in providing a measure of uncertainty

    Model-In-the-Loop Testing of Control Systems and Path Planner Algorithms for QuadRotor UAVs

    Get PDF
    Real systems, as Unmanned Aerial Vehicles (UAVs), are usually subject to disturbances and parametric uncertainties, which could compromise the mission accomplishment, considering particularly harsh environments or challenging applications. For this reason, the main idea proposed in this research is the design of the on-board software, as autopilot software candidate, for a multirotor UAV. In detail, the inner loop of the autopilot system is designed with a variable structure control system, based on sliding mode theory, able to handle external disturbances and uncertainties. This controller is compared with a simple Proportional-Integral-Derivative controller. The key aspects of the proposed methodology are the robustness to bounded disturbances and parametric uncertainties of the proposed combination of guidance and control algorithms. A path-following algorithm is designated for the guidance task, which provides the desired waypoints to the control algorithm. Model-in-the-loop simulations have been performed to validate the proposed approaches. Computationally efficient algorithms are proposed, as combination of a robust control system and path planner. Extensive simulations are performed to show the effectiveness of the proposed methodologies, considering both disturbances and uncertainties

    Influence of pH on the kinetics of hydrolysis reactions: the case of epichlorohydrin and glycidol

    Get PDF
    Glycidol (GL) and epichlorohydrin (EPI) are two widely used molecules in chemical, pharmaceutical and food industry applications. However, their use in aqueous environments causes the formation of compounds, like monochloropropanediol (MCPD) and dichloropropanol (DCP), reported as dangerous for human health and therefore regulated by severe law restrictions. To identify the conditions leading to such species and design the corresponding processes in order to prevent their formation, hydrolysis and chlorination of EPI and GL, together with dehydrohalogenation of DCP and MCPD, have been systematically analysed. Different reaction conditions in terms of temperature, pH and chloride ion concentration have been experimentally investigated and the concentration of the involved species was tracked over time by gas chromatography and high-performance liquid chromatography. These experimental data were fitted through a kinetic model, which allowed a general expression of the observed rate constant of each reaction as a function of temperature and pH to be quantified. In particular, the reaction rates are conveniently expressed as combinations of three contributions: alkaline, neutral and acid. The corresponding rate laws explicitly account for the critical role of pH. The developed mechanistic model exhibits good prediction ability and may represent the basis for optimising processes employing EPI and GL

    The tectonic puzzle of the Messina area (Southern Italy): Insights from new seismic reflection data

    Get PDF
    The Messina Strait, that separates peninsular Italy from Sicily, is one of the most seismically active areas of the Mediterranean. The structure and seismotectonic setting of the region are poorly understood, although the area is highly populated and important infrastructures are planned there. New seismic reflection data have identified a number of faults, as well as a crustal scale NE-trending anticline few km north of the strait. These features are interpreted as due to active right-lateral transpression along the north-eastern Sicilian offshore, coexisting with extensional and right-lateral transtensional tectonics in the southern Messina Strait. This complex tectonic network appears to be controlled by independent and overlapping tectonic settings, due to the presence of a diffuse transfer zone between the SE-ward retreating Calabria subduction zone relative to slab advance in the western Sicilian side

    Towards a random laser with cold atoms

    Get PDF
    Atoms can scatter light and they can also amplify it by stimulated emission. From this simple starting point, we examine the possibility of realizing a random laser in a cloud of laser-cooled atoms. The answer is not obvious as both processes (elastic scattering and stimulated emission) seem to exclude one another: pumping atoms to make them behave as amplifier reduces drastically their scattering cross-section. However, we show that even the simplest atom model allows the efficient combination of gain and scattering. Moreover, supplementary degrees of freedom that atoms offer allow the use of several gain mechanisms, depending on the pumping scheme. We thus first study these different gain mechanisms and show experimentally that they can induce (standard) lasing. We then present how the constraint of combining scattering and gain can be quantified, which leads to an evaluation of the random laser threshold. The results are promising and we draw some prospects for a practical realization of a random laser with cold atoms.Comment: Accepcted for publication by J. Opt. A for the special issue on nanolasers and random lasers (to be published early 2010

    On the geodynamics of the northern Adriatic plate

    Get PDF
    The northern Adriatic plate underwent Permian-Mesozoic rifting and was later shortened by three orogenic belts (i.e., Apennines, Alps and Dinarides) developed along three independent subduction zones. The inherited Mesozoic horst and graben grain determined structural undulations of the three thrust belts. Salients developed in grabens or more shaly basins, whereas recesses formed regularly around horsts. A new interpretation of seismic reflection profiles, subsidence rates from stratigraphic analysis, and GPS data prove that the three orogens surrounding the northern Adriatic plate are still active. The NE-ward migration of the Apennines subduction hinge determines the present-day faster subsidence rate in the western side of the northern Adriatic (> 1 mm/year). This is recorded also by the SW-ward dip of the foreland regional monocline, and the SW-ward increase of the depth of the Tyrrhenian sedimentary layer, as well as the increase in thickness of the Pliocene and Pleistocene sediments. These data indicate the dominant influence of the Apennines subduction, which controls the asymmetric subsidence in the northern Adriatic realm. The Dinarides front has been tilted by the Apennines subduction hinge, as shown by the eroded Dalmatian anticlines subsiding in the eastern Adriatic Sea. GPS data suggest that southward tilting of the western and central Southern Alps, whereas the eastern Southern Alps are uplifting. The obtained strain rates are on average within 20 nstrain/year. The horizontal shortening obtained from GPS velocities at the front of the three belts surrounding the northern Adriatic plate are about 2-3 mm/year (Northern Apennines), 1-2 mm/year (Southern Alps), and < 1 mm/year (Dinarides). The shortening directions tend to be perpendicular to the thrust belt fronts. The areas where the strain rate sharply decreases along a tectonic feature (e.g., the Ferrara salient, the Venetian foothills front) are proposed to be occupied by locked structures where stress is accumulating in the brittle layer and thus seismically prone. Finally, we speculate that, since the effects of three independent subduction zones coexist and overlap in the same area, plate boundaries are passive features

    Standalone vertex ïŹnding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ Îł, H → Z Z∗ →4l and H →W W∗ →lÎœlÎœ. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ïŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson
    • 

    corecore